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Abstract—Naphthalene–naphthalene, anthracene–anthracene, and naphthalene–anthracene assemblies 1.1, 2.2, and 1.2 linked by
2-ureido-4{1H}-pyrimidinone binding module were synthesized. Fluorescence quenching and lifetime measurements demonstrate
that the inner-assembly singlet energy transfer from naphthalene to anthracene in 1.2 occurs with the efficiency of ca. 89% and rate
constant of ca. 9.8 · 108 s�1. Föster energy transfer mechanism operates in this energy transfer process.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Hydrogen bonding networks play an important role in
biological energy- and electron-transfer processes.1,2

Considerable research efforts have been devoted to the
study of these processes that occur in hydrogen-bonded
systems in order to understand the photosynthetic reac-
tion center in plants and provide a base for designing
molecular photonic devices and artificial solar-energy-
conversion systems.1–5 Early studies1–4 have established
that doubly hydrogen-bonded systems such as carboxyl-
ate–urea3a and amidinium–carboxylate,3b,c and triply
hydrogen-bonded systems such as cyanuric acid–mela-
mine and cytosine–guannine4 motifs, could be used to
construct various molecular assemblies, and the photo-
induced energy- and (or) electron-transfer can be
achieved over long distances along the predetermined
directions in these systems. However, these hydrogen-
bonded systems suffer from the weak interactions and
low association constants.4b As a result, intermolecular
diffusional encounter between the donor and acceptor
is also invoked to account for the observed energy- or
electron-transfer processes. Since 1998, self-complimen-
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tary quadruply hydrogen-bonded homodimers have
received increasing attention because of their great
binding strength and directionality.6a Particularly, the
2-ureido-4{1H}-pyrimidinone AADD (A = hydrogen-
bonding acceptor, D = hydrogen-bonding donor) bind-
ing module developed by Meijer and co-workers has
shown extensive applications in assembling supramole-
cular oligomers and polymers.6 Recently, the 2-ureido-
4{1H}-pyrimidinone AADD module has also been
utilized to create hydrogen-bonded donor–acceptor dy-
ads. However, in most of such dyads, the donor and
acceptor are linked to the AADD module via flexible
chains, and the molecules may adopt many conforma-
tions.7 Evidently, better-defined systems would be
needed in order to interpret unambiguously the dynam-
ics of energy- or electron-transfer process in this kind of
AADD hydrogen-bonded assemblies. Here we report
the synthesis and inner-assembly energy transfer process
in a relatively rigid system (1.2), where naphthalene as
the energy donor and anthracene as the energy acceptor,
which are connected via only a methylene group to the
2-ureido-4{1H}-pyrimidinone AADD unit. Due to the
rigidity, directionality, and specificity of the linker,
naphthalene and anthracene are arranged in side-by-side
with donor-to-acceptor edge-to-edge distance being
13Å. Excitation of the naphthalene chromophore in
assembly 1.2 resulted in the inner-assembly singlet
energy transfer from naphthalene to anthracene with
high efficiency and a large rate constant.
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2. Synthesis of the quadruply hydrogen-bonded assemblies
1.1, 2.2, and 1.2

The synthesis11 of 1 and 2 involved three steps, as shown
in Scheme 1. Treatment of 2-bromomethyl-naphthalene
with ethyl acetoacetate in the presence of NaH afforded
intermediate 3, which was then reacted with guanidi-
nium carbonate in refluxing absolute ethanol. After sep-
aration, the crude product 4 was reacted with
butylisocyanate in refluxing pyridine to give compound
1 in good chemical yield. Similar procedures were also
followed in the preparation of compound 2. Here the
butyl groups were present for solubility purpose.

1H NMR spectra (Fig. 1) revealed that compounds 1
and 2 existed as assemblies 1.1 and 2.2 in CDCl3. The
large downfield shift for N–H protons provided direct
evidence for the involvement of strong hydrogen bond-
ing. Their AADD hydrogen-binding motif was deter-
mined by NOESY spectra, given in the supporting
information. No other binding modes were observed.
Dilution of the solutions of the compounds in CDCl3
to 1 · 10�5M did not lead to observable dissociation,
thus giving a lowest estimation of binding constant of
1 · 107M�1, which was in good agreement with the
value for a similar compound.6 Mixing equimolar of 1
and 2 in CDCl3 resulted in a 1H NMR spectrum which
was almost identical with that of the sum of 1.1 and 2.2.
Since the spectrum of assembly 1.2 was not distinguish-
able from that of 1.1+2.2, we did not have assurance of
the formation of 1.2. However, considering the reversi-
bility of the assembly formation and similar binding
constants for homo- and hetero-assemblies, we inferred
that a mixture of 1.1, 1.2, and 2.2 existed in the solution
in a ratio of 1:2:1 based on the statistical distribution.6h
Scheme 1. Synthesis of compounds 1 and 2.

Figure 1. 1H NMR spectra of the quadruply hydrogen-bonded

assemblies 1.1, 2.2, and 1.2 in CDCl3.
This proposal was supported by the fluorescence lifetime
measurements (see below).
3. Inner-assembly singlet energy transfer from naphthal-
ene to anthracene in 1.2

The absorption spectra of 1 and 2 as well as their equi-
molar mixture in dichloromethane were examined. The
spectrum of the mixture was essentially identical to the
sum of the spectra of 1 and 2, indicating the absence
of interactions between naphthalene and anthracene in
their ground states. Notably, at 290nm the molar extinc-
tion coefficient of 1 was much greater than that of 2.
Thus irradiation of the mixture of 1 and 2 with 290nm
mainly excited the naphthalene chromophore, and only
a small fraction of light was absorbed by the anthracene
chromophore.



Figure 2. Fluorescence spectra of 2 in dichloromethane in the absence

and presence of 1. [2 = 5 · 10�6M; [1] = 0, 1, 2, 3, 5, 8, and 15

(· 10�6)M.
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Figure 2 showed the fluorescence spectra of 2 in dichlo-
romethane in the absence and presence of 1. In the ab-
sence of 1, 2 exhibited a weak fluorescence
characteristic of the anthracene chromophore with max-
ima at 397, 420, and 445nm and a shoulder at 480nm
upon excitation at 290nm. This weak fluorescence was
obviously due to the direct absorption of the anthracene
chromophore at the excitation wavelength. Upon addi-
tion of 1 into the solution of 2, the fluorescence of 2
increased under the same excitation condition. A weak
naphthalene fluorescence in the region of 310–375nm
was also observed. As mentioned above, at 290nm the
light was mainly absorbed by naphthalene chromo-
phore. Evidently, the enhancement, rather than reduc-
tion of the anthracene fluorescence in the presence of 1
was due to the singlet energy transfer from the naphtha-
lene to the anthracene chromophore. Since in the solu-
tion 1 and 2 existed in the forms of 1.1, 1.2, and 2.2,
both inter-assembly and inner-assembly energy transfer
may occur. However, because the used concentrations
of 1 and 2 were very low, the energy transfer should
mainly occur in assembly 1.2.8

The inner-assembly energy transfer in 1.2 was further
evidenced by the fluorescence lifetime measurements.
In the absence 2, the naphthalene fluorescence of 1 in
dichloromethane solution decayed monoexponentially
and the lifetime (s1) was ca. 8.2ns. However, in the pres-
ence of 2, the fluorescence decay profile for the naphthal-
ene was well described by a biexponential function:
IðtÞ ¼ A1 expð�t=s1Þ þ A2 expð�t=s2Þ ð1Þ

The longer lifetime (s1) was found to be identical with
that in the absence of 2 (ca. 8.2ns), and the shorter life-
time (s2) was ca. 0.9ns. These fluorescence lifetimes were
independent to the concentrations of 1 and 2. Evidently,
the longer lifetime fluorescence was attributed to the
naphthalene in 1.1, and the shorter lifetime fluorescence
to the naphthalene in 1.2. The preexponential coeffi-
cients A1 and A2 in Eq. 1 reflected the contributions of
the longer and shorter lifetime fluorescence components
to the fluorescence intensity at the end of excitation
pulse, respectively, and were related to the respective
concentrations of 1.1 and 1.2. The ratio of A1 to A2

was found to be dependent on the relative concentra-
tions of 1 and 2 in the solution. For example, for the
solution with equimolar of 1 and 2 (5 · 10�6M), the
ratio of A1 to A2 was found to be 1.0. Considering that
1.1 involves two naphthalene chromophores, the con-
centration ratio of 1.1 to 1.2 should be 1:2.

The fluorescence lifetimes of the naphthalene in the solu-
tion of the mixture of 1 and 2 allowed the calculation of
the rate constant (kET) and efficiency (/ET) of the singlet
energy transfer in 1.2.
kET ¼ 1=s2 � 1=s1 ð2Þ
/ET ¼ 1� s2=s1 ð3Þ

kET and /ET were obtained to be ca. 9.8 · 108s�1 and
89%, respectively.
4. Mechanism of the inner-assembly singlet energy
transfer from naphthalene to anthracene in 1.2

The highly efficient singlet energy transfer from the
naphthalene to anthracene in 1.2 prompted us to ration-
alize the mechanism. It has been well established9 that
dipole–dipole interaction is possible for singlet–singlet
energy transfer. To ascertain this mechanism we per-
formed a calculation for kET and /ET. According to
Förster theory9 the kET for dipole–dipole interaction is
related to the geometric and spectroscopic factors of
the donor and acceptor chromophores by Eq. 4
kET ¼ R�6Jv2n�4s�1
1 /f � 8:8� 10�25s�1 ð4Þ
where R is the distance (in Å) between the donor and the
acceptor; v2 is the dipole–dipole orientation factor; n is
the refractive index of the medium; s1 and /f are the
fluorescence lifetime and fluorescence quantum yield of
the donor, respectively, in the absence of acceptor; J is
the spectral overlap integral. To estimate R and v2, we
used GAUSSIANGAUSSIAN 98 program10 to calculate the energies
of several conformations of assembly 1.2, and found
that the extended conformation (Fig. 3) had the lowest
energy. In this conformation the naphthyl and anthryl
chromophores were parallel and located on the different
sides of the AADD plane. Thus, v2 was signed to be 1.0.
The edge-to-edge distance between the two chromo-
phores was ca. 13.0Å. s1 and /f were measured to be
8.2ns and 0.028, respectively. J is given by Eq. 5.

R

J ¼ F ðkÞeðkÞk4dk
R
F ðkÞdk

ð5Þ
where F(k) is the fluorescence intensity of the donor at
the wavelength k (in cm), and the e (k) is the molar
extinction coefficient (in cm�1M�1) of the acceptor at
wavelength k. Calculation revealed that J for the naph-
thyl and anthryl chromophores in 1.2 had the value of
5.36 · 10�15Mcm6. This in turn gave kET to be
8.1 · 108s�1 according to Eq. 4. By using Eqs. 2 and



Figure 3. The structure of 1.2 in extended conformation calculated by

GAUSSIANGAUSSIAN 98 program.
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3, and the calculated kET and s1, we obtained /ET to be
87%. Both the calculated rate and efficiency were con-
sistent with the values obtained from the experiments.
The excellent agreement between the calculated and
observed data indicates that the singlet energy transfer
indeed proceeds by Förster mechanism.
Acknowledgements

Financial support from the Ministry of Science and
Technology of China (Grant Nos G2000078104,
G2000077502, 2003CB716802) and the National Science
Foundation of China (Grant Nos 20332040, 20333080,
20125207, 20272066, 20202013) is gratefully acknowl-
edged. We also thank Prof. Wen Li for the emission life-
time measurements and Mrs. Xin-Hong Zhou from
Tsinghua University for the calculation using GAUSSIANGAUSSIAN

98 program.
Supplementary material

Supplementary material associated with this article can
be found, in the online version, at doi:10.1016/j.tetlet.
2004.06.138. Contains the amplified 1H NMR spectra
of 1.1, 2.2, and 1.1+2.2 with ratio of 1 as well as 2D
NOESY spectra of 1.1 and 2.2.
References and notes

1. (a) Pictrowiak, P. Chem. Soc. Rev. 1999, 28, 143–150; (b)
Ward, M. D. Chem. Soc. Rev. 1997, 26, 365–375; (c)
Sessler, J. L.; Wang, B.; Springs, S. L.; Brown, C. T. In
Comprehensive Supramolecular Chemistry; Atwood, J. L.,
Davies, J. E. D., MacNicol, D. D., Vogtle, F., Murakami,
Y., Eds.; Pergamon: Oxford, 1996; Vol. 4, p 311; (d)
Sessler, J. L.; Vrown, C. T.; Oconnor, D.; Springs, S. L.;
Wang, R.; Sathiosatham, M.; Hirose, T. J. Org. Chem.
1998, 63, 7370–7374; (e) de Rege, P. J. F.; Williams, S. A.;
Therein, M. J. Science. 1995, 269, 1409–1413; (f) Prasad,
E.; Gopidas, K. R. J. Am. Chem. Soc. 2000, 122,
3191–3196.

2. (a) Duun, A. R.; Dmochowski, I. J.; Winkler, J. R.; Gray,
H. B. J. Am. Chem. Soc. 2003, 125, 12450–12456; (b)
Winkle, J. R.; Gray, H. B. Chem. Rev. 1992, 92, 369–379.

3. (a) Myles, A. J.; Branda, N. R. J. Am. Chem. Soc. 2001,
123, 177–178; (b) Roberts, J. A.; Kirby, J. P.; Nocera, D.
G. J. Am. Chem. Soc. 1995, 117, 8051–8052; (c) Derg, Y.
Q.; Roberts, J. A.; Peng, S. M.; Chang, C. K.; Nocera, D.
G. Angew. Chem., Int. Ed. 1997, 36, 2124–2127.

4. (a) Sessler, J. L.; Wang, B.; Harriman, A. J. Am. Chem.
Soc. 1995, 117, 704–714; (b) Zimmerman, S. C.; Corbin, P.
S. Struct. Bonding 2000, 96, 63–94.

5. (a) Zhang, L.-P.; Chen, B.; Wu, L.-Z.; Tung, C.-H.; Cao,
H.; Tanimoto, Y. Chem. Eur. J. 2003, 9, 2763–2769; (b)
Zhang, L.-P.; Chen, B.; Wu, L.-Z.; Tung, C.-H. J. Phys.
Chem. A. 2003, 107, 3438–3442; (c) Fu, X.-G.; Chen, B.;
Wu, L.-Z.; Zhang, L.-P.; Tung, C.-H. Res. Chem.
Intermed. (in press).

6. (a) Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A.
L.; Meijer, E. W. J. Am. Chem. Soc. 1998, 120, 6761–6769,
and references cited therein; (b) Söntjens, S. H. M.;
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